LOW VOLTAGE APPARATUS ›› 2025, Vol. 0 ›› Issue (10): 72-83.doi: 10.16628/j.cnki.2095-8188.2025.10.010
• Detecting & Experiment • Previous Articles Next Articles
HE Yun, SHENG Wenjuan
Received:2025-07-24
Online:2025-10-30
Published:2025-11-20
CLC Number:
HE Yun, SHENG Wenjuan. State of Charge Estimation for Lithium-Ion Batteries Combining Fiber Bragg Grating Sensor and Feature Screening[J]. LOW VOLTAGE APPARATUS, 2025, 0(10): 72-83.
| [1] | 饶宇飞, 司学振, 谷青发, 等. 储能技术发展趋势及技术现状分析[J]. 电器与能效管理技术, 2020(10):7-15. |
| [2] | 曹梓泉, 李雅欣, 马凌怡, 等. 基于锂电池的电氢混合储能系统研究[J]. 电器与能效管理技术, 2022(5):29-34. |
| [3] | 李晓宇, 陈炫锴, 李嘉栩, 等. 基于机器学习的电动汽车续航里程预测[J]. 电器与能效管理技术, 2021(10):78-82. |
| [4] |
GABBAR H, OTHMAN A, ABDUSSAMI M. Review of battery management systems(BMS)development and industrial standards[J]. Technologies, 2021, 9(2):28.
doi: 10.3390/technologies9020028 |
| [5] |
MOVASSAGH K, RAIHAN A, BALASINGAM B, et al. A critical look at coulomb counting approach for state of charge estimation in batteries[J]. Energies, 2021, 14(14):1-33.
doi: 10.3390/en14010001 |
| [6] | CHEN X, LEI H, XIONG R, et al. A novel approach to reconstruct open circuit voltage for state of charge estimation of lithium ion batteries in electric vehicles[J]. Applied Energy, 2019, 255:113758.1-113758.14. |
| [7] | EE Y J, TEY K S, LIM K S, et al. Lithium-ion battery state of charge(SOC)estimation with non-electrical parameter using uniform fiber Bragg grating(FBG)[J]. Journal of Energy Storage, 2021, 40:102704.1-102704.9. |
| [8] |
ZHANG L, LIU X, LI K, et al. Real-time battery temperature monitoring using FBG sensors:A data-driven calibration method[J]. IEEE Sensors Journal, 2022, 22(19):18639-18648.
doi: 10.1109/JSEN.2022.3200589 |
| [9] |
CHEN D, ZHAO Q, ZHENG Y, et al. Recent progress in lithium-ion battery safety monitoring based on fiber bragg grating sensors[J]. Sensors, 2023, 23(12):5609.
doi: 10.3390/s23125609 |
| [10] | 许守平, 胡娟, 徐翀, 等. 一种基于光纤光栅传感的锂离子电池温度测量方法[J]. 电器与能效管理技术, 2020(12):85-88. |
| [11] |
BANDYOPADHYAY S, FABIAN M, LI K, et al. Fiber-Bragg-grating-based sensor system to measure battery state of charge based on a machine learning model[J]. Batteries, 2023, 9(10):508.
doi: 10.3390/batteries9100508 |
| [12] |
PENG J, JIA S, YU H, et al. Design and experiment of FBG sensors for temperature monitoring on external electrode of lithium-ion batteries[J]. IEEE Sensors Journal, 2020, 21(4):4628-4634.
doi: 10.1109/JSEN.7361 |
| [13] |
SOMMER L W, KIESEL P, GANGULI A, et al. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors[J]. Journal of Power Sources, 2015, 296:46-52.
doi: 10.1016/j.jpowsour.2015.07.025 |
| [14] | 史雯慧, 王浩, 曹慧, 等. 基于光纤布拉格光栅传感的锂电池内部状态原位监测[J]. 光子学报, 2023, 52(9):156-164. |
| [15] | LI Y, LI K, LIU X, et al. A hybrid machine learning framework for joint SOC and SOH estimation of lithium-ion batteries assisted with fiber sensor measurements[J]. Applied Energy, 2022, 325:1-12. |
| [16] | PENG J, JIA S, YANG S, et al. State estimation of lithium-ion batteries based on strain parameter monitored by fiber Bragg grating sensors[J]. Journal of Energy Storage, 2022, 52:104950.1-104950.10. |
| [17] | XIA X, WU W, LI Z, et al. State of charge estimation for commercial Li-ion battery based on simultaneously strain and temperature monitoring over optical fiber sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73:2516411.1-2516411.11. |
| [18] |
RAO Y. In-fibre Bragg grating sensors[J]. Measurement Science and Technology, 1997, 8(4):355.
doi: 10.1088/0957-0233/8/4/002 |
| [19] |
GANGULI A, SAHA B, RAGHAVAN A, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2:Internal cell signals and utility for state estimation[J]. Journal of Power Sources, 2017, 341:474-482.
doi: 10.1016/j.jpowsour.2016.11.103 |
| [20] |
SUN Z, BEBIS G, MILLER R. Object detection using feature subset selection[J]. Pattern Recognition, 2004, 37(11):2165-2176.
doi: 10.1016/j.patcog.2004.03.013 |
| [21] |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5):383-391.
doi: 10.1038/s41560-019-0356-8 |
| [22] | 高书豫, 刘树鑫, 邹嫣然, 等. 基于 GA-SVR 的交流接触器剩余电寿命预测[J]. 电器与能效管理技术, 2023(5):9-14. |
| [23] |
LIM K S, ONG Z C, LEE Y S, et al. Pseudohigh-resolution spectral interrogation scheme for small signals from FBG sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(8):2964-2970.
doi: 10.1109/TIM.19 |
| [24] |
DONOHO D L, JOHNSTONE J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3):425-455.
doi: 10.1093/biomet/81.3.425 |
| [25] | WANG C, WANG Y, DONG L, et al. SOC estimation of lithium battery based on the combination of electrical parameters and FBG non-electrical parameters and using NGO-BP model[J]. Optical Fiber Technology, 2023, 81:1.1-1.10. |
| [26] |
BHATTACHARJEE A, VERMA A, MISHRA S, et al. Estimating state of charge for xEV batteries using 1D convolutional neural networks and transfer learning[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4):3123-3135.
doi: 10.1109/TVT.2021.3064287 |
| [1] | GONG Weizheng. Research on Power Prediction Characteristics of New Energy Based on Sensitive Meteorological Feature Factor Screening and PSO-SVM Model Optimization [J]. LOW VOLTAGE APPARATUS, 2025, 0(3): 38-45. |
| [2] | LIU Jianchao, GUO Weiwen, LU Deng, YANG Liming, JIANG Caisheng. Research Progress on Active Protection Against Thermal Runaway of High Power Fast Charging Lithium-ion Batteries [J]. LOW VOLTAGE APPARATUS, 2024, 0(11): 10-19. |
| [3] | WU Yuhao, CHEN Siwen, GUO Yilong, XING Shiyou, WANG Shuhang, WANG Ruoyu, SUN Jinlei. Research on Temperature Inconsistency of New and Aged Mixed Battery Packs [J]. LOW VOLTAGE APPARATUS, 2024, 0(11): 38-44. |
| [4] | WANG Bin, ZHAO Dayong, LI Qian. Estimation of Impact Fatigue Life of Spring Operating Mechanism’s Opening Gusset Plate [J]. LOW VOLTAGE APPARATUS, 2024, 0(1): 31-37. |
| [5] | LI Xiaohua. Remaining Useful Life Prediction of Lithium Batteries Based on IPSO-LIESN network [J]. LOW VOLTAGE APPARATUS, 2023, 0(5): 51-58. |
| [6] | LI Jianlin, WANG Zhe, XU Dezhi, MA Fuyuan, MENG Gaojun. Overview of Key Technologies for Lithium-ion Battery Life Prediction Based on Data-Driven Methods [J]. LOW VOLTAGE APPARATUS, 2021, 0(9): 10-18. |
| [7] | LI Xiaoyu, CHEN Xuankai, LI Jiaxu, LIN Zihan. Driving Range Prediction of Electric Vehicles Based on Machine Learning [J]. LOW VOLTAGE APPARATUS, 2021, 0(10): 78-82. |
| [8] | LI Wenqi, GAO Dongxue, LI Zhaohui, RAO Yufei, GU Bo. Forecast and Uncertainty Analysis of Lithium-ion Batteries SOC Based on LSTM-NPKDE [J]. DIANQI YU NENGXIAO GUANLI JISHU, 2020, 0(5): 44-50. |
| [9] | LIU Qianqian, ZHAO Yanben, LÜ Chao. Research on Model Simulation for High Current-Rate Charge/Discharge of LiFePO4 Lithium-ion Batteries [J]. DIANQI YU NENGXIAO GUANLI JISHU, 2020, 0(5): 57-61. |
| [10] | HUANG Tao, XU Zhipeng, GE Le. Optimal Scheduling of Hydrogen Energy Storage System Considering Random Characteristics of Wind Power Output [J]. DIANQI YU NENGXIAO GUANLI JISHU, 2020, 0(5): 72-77. |
| [11] | CHU Linlin, ZONG Ming, LI Yili, WANG Jingwei, ZHU Xia, SHI Yueqi, GU Jie. Planning of Distribution Network Expansion Considering Multi-Type Distributed Energy Resources [J]. LOW VOLTAGE APPARATUS, 2020, 0(12): 89-98. |
| [12] | LUAN Deli, ZHANG Yuxian. An Optimal Allocation Strategy Considering Reliability for Hybrid Wind-Photovoltaic-Battery Energy System [J]. LOW VOLTAGE APPARATUS, 2020, 0(11): 95-102. |
| [13] | DU Mengke, REN Yanfeng, HU Yongxin, CHENG Haozhong. Unit Commitment Considering Active Optimal Transmission Switching [J]. DIANQI YU NENGXIAO GUANLI JISHU, 2020, 0(1): 94-99. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||